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Thermalization of an intense, space-charge-dominated electron beam in a long focusing channe

Bruce E. Carlsten
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 29 January 1999!

A continuous electron beam with a correlated emittance will eventually thermalize. Initially, the beam
emittance for an intense, high-brightness, space-charge-dominated beam will oscillate, but after a sufficiently
long time, it will reach an equilibrium value. The emittance oscillations are due to coherent transverse plasma
oscillations in the beam and are a manifestation of periodic energy exchange between potential and kinetic
energies. The beam eventually attains an equilibrium emittance, as the beam equipartitions the kinetic and
potential energies. This equipartioning is reached as the beam thermalizes due to a form of Landau damping of
the radial oscillations at different radial positions within the beam. Slight differences in the transverse plasma
oscillation frequency for different radial positions lead to incoherence in the oscillations. In this paper, we
calculate the equilibrium time scales required for equipartioning. We show that the equilibrium emittance
scalings and magnitude can be predicted by conservation of energy considerations. In addition, we show that,
in the space-charge dominated regime, there is a correspondence between the energy-conservation approach
and the kinematic approach.@S1063-651X~99!10608-1#

PACS number~s!: 03.50.De, 29.27.Bd, 41.75.Ht
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I. INTRODUCTION

High-current, low-emittance, high-brightness, spa
charge-dominated electron beams in long focusing chan
often demonstrate emittance oscillations, where the rms,
malized radial beam emittance is defined by

«52bgA^r 2&^r 82&2^rr 8&2, ~1!

where the brackets refer to ensemble averages over the
ticle distribution at a single axial location,b is the beam’s
axial velocity normalized to the speed of light,g is the rela-
tivistic mass factor,r is the radial coordinate of the particle
and the prime refers to an axial derivative. Although this
not a strictly conserved quantity~it does not grow in an axia
magnetic field!, this is an appropriate emittance definitio
here because we will assume that the beam has no in
thermal emittance and that the beam has zero canonica
gular momentum. The emittance is a direct measure of
beam’s quality@1#, and the definition here keeps it unam
biguous while the beam is in an external axial magnetic fi
@2#.

Emittance oscillations are common in rf photoinjecto
@3–6# and other high-brightness electron beams. The em
tance growth is due to mismatches between particles’ in
tion conditions and their equilibrium orbits. These m
matches can be caused by a nonequilibrium beam den
nonlinear transverse forces in a gun or focusing section
other nonlinearities. The emittance growth results from
dial nonlinearities in the particles’ oscillations about th
equilibrium radii. To first order, these orbit oscillations are
phase, and the emittance growth vanishes at intervals of
plasma periods, and is thereby periodic. These emittance
cillations have been analyzed in detail for rf photoinjecto
@5,6#. For rf photoinjectors, the beam is rapidly accelerat
and only goes through a few emittance oscillations by
time it reaches its final application, due to the time dilati
of a relativistic beam and the high accelerating gradie
PRE 601063-651X/99/60~2!/2280~10!/$15.00
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However, a large number of these oscillations could oc
for an emerging class of high-brightness, low-gradient, hi
current induction linacs with long-pulse electron bea
@7,8#.

It is important to point out that these emittance oscil
tions do not occur for several classes of charged part
beams, including most ion beams and low-brightness e
tron beams. For these types of beams, the initial misma
leads to an emittance growth that asymptotes to a final va
and does not oscillate. This occurs when there is overtak
or wave breaking, in radial phase space. This overtak
takes place within a quarter transverse plasma period,
transforms an initially simply correlated emittance to o
that is not simply correlated and effectively unrecoverab
and thus its magnitude will not oscillate. The split betwe
these regimes will be more clearly defined in the Append
For the purposes of this paper, we will call the regime wh
no wave breaking occurs to be space-charge dominated
the regime where wave breaking occurs to be emitta
dominated. Note that these are not the usual definitions,
these definitions are more relevant to this study. The em
tance evolution in the emittance-dominated regime can
described well by thermodynamic considerations and is
mally well understood@1#. It is the purpose of this paper t
present an equivalent understanding of the emittance ev
tion in the space-charge dominated regime where these e
tance oscillations occur.

Over a sufficiently long distance, these emittance osci
tions will damp out, leading to an effective thermalized em
tance, at an intermediate value. A typical simulation
shown in Fig. 1, of a 4-kA, 4-MeV, long-pulse electron bea
with a 3-cm radius, using the particle-pushing codeSLICE

@9#. We see several~on the order of 30! oscillations, gradu-
ally decaying in amplitude to an intermediate value, follow
by some minor emittance oscillations due to beating.

In this simulation, an initially zero-emittance beam, wi
nonuniform charge density, was injected into a transp
channel with a constant external magnetic field. The exte
2280 © 1999 The American Physical Society
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FIG. 1. ~a! Beam rms radius versus axial distance, nominal case~4 MeV, 4 kA!; ~b! emittance versus axial distance, nominal case;~c!
initial beam density;~d! final beam radial phase space; and~e! beam radial phase space at 375 m.
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field was adjusted so that the beam rms radius was ne
matched. The beam was assumed to have zero canonica
gular momentum. The beam energy was 4 MeV and be
current was 4 kA. This problem geometry was chosen
unambiguously demonstrate the important physics of
emittance oscillations and equipartioning. TheSLICE code
self-consistently pushes particles using the Lorentz fo
equation, including the beam’s self radial electric and ax
magnetic field~the beam’s diamagnetic field!. Busch’s theo-
rem @10# is used to calculate the azimuthal motion of t
particles. The code uses the long-beam approximation
which Gauss’s law is used for the radial electric field a
Ampere’s law is used for the axial magnetic field. A colle
tion of particles at the same axial location is used to desc
rly
an-
m
o
e

e
l

in

e

the beam. As a group, the particles are stepped axially f
the origin to the end of the problem. For these simulation
0.2-mm axial step size and 16 000 particles per axial s
were used to ensure sufficient numerical stability.

In this simulation and the following analysis we have in
tiated the beam mismatch with a nonuniform beam dens
In more realistic cases, the mismatch occurs from a com
nation of nonuniform beam density and nonlinear exter
focusing forces. However, the phenomena described in
paper are mostly independent of the exact cause of the
match and also occur for mismatches due to nonlinear foc
ing.

For the nominal case, we have chosen a density non
form of about 100%~as defined in the following analysis!, in
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2282 PRE 60BRUCE E. CARLSTEN
order to generate emittances of several hundred mm m
which is typical for new and proposed high-brightness ind
tion accelerators. The following analysis assumes relativ
small density nonuniformities; however, the analysis giv
proper scaling laws and even relatively good quantitat
estimates when compared to the simulations~within a factor
of two!. Also, we have assumed that the density profile
linear with radius. This was done because a more gen
density function would lead to essentially the same result
found here, with some slightly different numerical facto
This approximation allows us to simply characterize t
beam density nonuniformity with a single parameter in or
to make an approximate estimate of the emittance evolut

We have plotted in Fig. 1 the simulation results for t
nominal case, described above, for an overall transport
tance of 400 m. In Fig. 1~a!, we see the beam rms radiu
versus axial distance. In Fig. 1~b!, we see the beam rm
emittance versus axial distance. In Fig. 1~c!, we see the
beam’s initial current density as a function of radial positio
and in Fig. 1~d! we see the final beam phase spacer 2r 8. In
Fig. 1~e!, we see the beam phase space at a second, sli
different axial location~375 m!.

We see four key features in this simulation. First, we s
very pronounced large emittance oscillations at short a
distances. Second, these oscillations damp out to an equ
rium emittance somewhat larger than the mean of the os
lations. Third, the equilibrium emittance is stable over ve
long axial distances. Fourth, although the equilibrium em
tance is approximately constant, the beam phase spa
changing, with kinks moving up and down the partic
phase-space distribution.

We will explain these features in this paper, for beams
the space-charge-dominated regime. As described above
emittance oscillations arise from coherent transverse pla
oscillations within the beam. However, the phase of the
cillations vary slightly at different radial positions, and th
oscillations are thus Landau damped to a stable equilibr
value. This equilibrium emittance is a thermalized, but c
related emittance, as seen in Figs. 1~d! and 1~e!. Long-term
beating of the collection of slightly different frequencies a
count for the slight re-emergence of the emittance osc
tions.

Both the peak of the emittance oscillations and the eq
librium emittance scale linearly with beam radius, linea
with the square root of the current, and inversely with t
square root of the relativistic mass factor.

In addition to wave breaking in phase space
emittance-dominated beams, this emittance-oscilla
mechanism is not relevant if collisions between partic
thermalize the beam in a short distance. However, for th
types of beams, the collisional mechanism requires th
sands of meters for thermalization, and is not significant

Another important conclusion in this paper is that, in t
space-charge-dominated regime, a kinematic analysis o
beam emittance evolution is equivalent to an analysis ba
on energy conservation. This correspondence is not tru
general for emittance-dominated electron beams.

In the next section, we verify that the thermalization d
tance due to collisions between particles is extremely lo
In the following section, we estimate the axial distance
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quired for Landau damping by considering the range
transverse plasma oscillation frequencies at different ra
locations within the beam.

Then we describe the emittance growth from the point
view of the excess potential energy of the system, and p
dict both the maximum of the emittance oscillations and
thermalized emittance. These predictions are in good ag
ment with the simulations in terms of both absolute mag
tudes and scalings with beam parameters. We consider
effect of radial correlations in the emittance growth, a
show that both the energy-conservation and kinematic
proaches yield equivalent results.

In the final section, we show that any long-term emittan
decay or growth must be on extremely long axial scales.

II. THERMALIZATION DUE TO COLLISIONS BETWEEN
PARTICLES

In this section we estimate the scale lengths required
the beam’s phase space to reach thermal equilibrium re
ing from Coulomb collisions between particles, and sh
that this mechanism is insignificant over the axial distan
we are considering. We consider the phase space show
Fig. 2. There is a correlated beam emittance with some sm
uncorrelated component. We consider purely transverse C
lomb collisions between particles that are slightly radia
offset, as shown in Fig. 3. This type of collision transfe
transverse energy to transverse energy. This class of c
sions is the dominant one leading to transverse therma
tion, and will lead to an increase of the uncorrelated em
tance, until an equilibrium level is reached. The mechan
can be understood by considering Figs. 2 and 3. Particle
slightly different radial positions, but with some uncorrelat
emittance, will undergo radial Coulomb scatterings, wh
will tend to give particles at nearby radial positions the sa
rms radial divergence. Slowly, the beam’s phase space
evolve so that the radial rms divergence is the same a
radial positions within the beam. The interacting particl
shown in Fig. 3, initially have identical angular momentum
but a relative radial velocity due to the uncorrelated em
tance. There are no scatterings without the uncorrelated e
tance; the rate of thermalization depends on the magnitud
the uncorrelated emittance. Note that this mechanism

FIG. 2. Hypothetical beam radial phase space, showing b
correlated and uncorrelated parts to the emittance.
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also lead to an uncorrelated spread in azimuthal velocit
which will slightly modify the transfer rate of radial diver
gence between radial positions, as we will see below.

Alternative scattering mechanisms are not importa
Relativistic beams have very little axial velocity spread, a
the transfer from axial energy to transverse energy is in
nificant. Also, transverse collisions that transfer transve
energy to axial energy~the Boersch effect@11–13#! provide
some damping of the transverse energy, but do not cha
the thermalization scale length at the level we are calcu
ing.

The thermalization rate from transverse collisions w
slow down, as the transverse energy at a given radial pos
grows to the equilibrium value, due to equilibrium force
We will not consider these equilibrium forces, and just es
mate the equilibrium time by dividing the equilibrium tran
verse energy by the initial transverse energy growth r
This will underestimate the equilibrium distance, but can
used to show that this mechanism is unimportant for typ
high-brightness, relativistic beams. We will assume that
beam is mostly uniform in density.

The transverse momentum transfer for the two particle
Fig. 3 in their center-of-mass frame is given by

Dpc.m.5
2e2

n relb4p«0
, ~2!

whereb is their impact parameter,e is the electronic charge
«0 is the permitivity of free space, andn rel is the particles’
relative velocity in their frame of reference. The avera
energy transfer is very small for any particle, but the aver
energy transfer rate does not have to be. The transverse
locity transfer is given by

~Dn!2
c.m.5

4e4

m2n rel
2 b2~4p«0!2 , ~3!

where nowm is the electronic mass. Now the number
collisions per second that a single electron sees in its cen
of-mass frame is given by

dSNc.m.

sec D5
I

pr e
2bgce

n rel~2pb!db, ~4!

FIG. 3. Radial Coulomb collision between two particles due
uncorrelated emittance.
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whereN is the number of collisions,I is the beam current
and r e is the beam edge radius.

The rate of increase in the transverse rms velocity tran
is thus given by

d~Dn!c.m.
2

dtc.m.
5E 8Ie3

r e
2bgcm2n relb~4p«0!2 db. ~5!

After integration over all impact parameters and transferr
variables to the beam frame~Dn lab5Dncm/g, n lab5n rel /g,
and t lab5tcmg!, we have

d~Dn! lab
2

dt
5

8Ie3c5

r e
2bg5c6m2n lab~4p«0!2 ln L

5
8Iec5

I A
2r e

2bg5g lab
ln L, ~6!

where we have usedI A5mc34p«0 /e, which is about 17 kA,
and the logarithm of the ratio of allowable impact paramet
is always close to 10@1#.

The beam’s unnormalized emittance is«un
2 5@Dn lab

2 /
b2c2#r e

2 ~the missing factor of 2 results from equipartitionin
between the radial and azimuthal directions!, and the normal-
ized emittance is related to the unnormalized emittance
«n

25«un
2 /b3g3. Note that the rms relative velocity is given b

«un5r en lab/bc. The unnormalized emittance growth
given by

d«un
2

dt
5

8Iec2r e

I A
2g5b3«un

ln L ~7!

and the normalized emittance growth is given by

«n
35z

24Iecre

I A
2g2b2 ln L. ~8!

For a beam of about 4 kA and a relativistic mass factor
about 10, over a kilometer is required for an emittan
growth of 100 mm mrad.

III. ESTIMATING TIME REQUIRED FOR
THERMALIZATION DUE TO LANDAU DAMPING

We can estimate the time required for the Landau dam
ing to occur, by considering the spread of the periods of
transverse plasma oscillations.

The beam is space-charge-dominated, and we will ass
that the particle motion is laminar with no particle orbi
crossing. The transverse motion of a particle in a slice of
beam in a uniform focusing channel of normalized stren
K is given by

s91Ks2
K̂s

s
50, ~9!

wheres is the transverse coordinate of the particle andK̂s is
the normalized space-charge force,K̂s52I (r )/I Ag3b3,
whereI (r ) is the current enclosed by the particle’s orbit. T
equilibrium particle radius is given by
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seq5AK̂s /K. ~10!

We write the particle radius as

s5d1seq, ~11!

and we assume that all particles in the beam are very ne
matched to their equilibrium orbits~the beam is rms matche
and the density nonuniformity is small!. We then come up
with this differential equation for the displacement:

d91F2K1KS d

seq
D 2Gd2KS d

seq
D 2

seq50. ~12!

For small displacements, we can substitute (d rms/seq)
2 for

(d/seq)
2, and this equation has the solution

d5d01d1 cosVz, ~13!

where

V5K1/2F21S d rms

seq
D 2G , ~14!

d05

KS d rms

seq
D 2

2K1KS d rms

seq
D 2 seq, ~15!

andd1 is given by the initial offset from the particle’s equ
librium position. Equations~13! and ~15! can be solved to
find the particle’s orbit exactly to this order; however, f
estimating the time required for Landau damping, this is
necessary.

Note that the equilibrium orbit radius is given byseq

5rAJ/Jrms, wherer is the particle injection radius,J is the
average current density up the particle’s orbit, andJrms is the
rms current density. The initial orbit offset is given byd0

5seq(12AJrms/J), and the rms offset is close tod rms
2

5d0
2/2. The particle’s oscillation frequency is given by

V~r !5K1/2@21 1
2 ~AJrms/J21!2#. ~16!

At small axial locations, the particles’ oscillations stay
phase, resulting in the coherent transverse oscillations l
ing to the emittance oscillations shown in Fig. 1~b!.

The transverse oscillations are out of phase at an a
location zLandau when the oscillations of the rms trajecto
and the edge trajectory are 90 degrees out of phase:

$~2K !1/2@11 1
4 ~AJrms/J21!2#2~2K !1/2%zLandau5

p

2
~17!

or

zLandau

zplasma

5
1

~AJrms/J21!2
, ~18!

wherezplasmais the distance required for a plasma oscillatio

zplasma52p/~2K !1/25pr eA~ I /I A!g3b3. ~19!
rly

t

d-

al

,

For the density variation in Fig. 1~Jrms/J about 0.7!, this
formula predicts that the equilibrium is reached in about
plasma oscillation periods; from Fig. 1~b!, we see that equi-
librium is reached in about 35 periods. This agreem
shows that the Landau damping model is consistent with
simulation. Examination of the final phase-space plot@Fig.
1~c!# shows that different parts of the slice are at differe
phases of the oscillations. A second phase-space plot, a
bit upstream@Fig. 1~e!#, shows that the oscillation phases
different slice locations have changed, but the rms emitta
is basically unchanged.

Note that the plasma wavelength for the nominal case
5.1 m, or the emittance oscillation period is about 2.55 m
excellent agreement with that shown in Fig. 1~b!

IV. ESTIMATING THE MAXIMUM EMITTANCE
AND THE EQUILIBRIUM EMITTANCE

FROM ENERGY CONSERVATION ARGUMENTS

In the space-charge-dominated regime, the emitta
growth is mostly due to the radial velocity of the particle
and the effect of the radial positions can be neglected.
short-range emittance oscillations have the following fe
tures. Initially, there is no emittance, as the radial velocity
zero, but there are nonlinear forces on the particles. Th
nonlinear forces~which vanish in an rms sense! lead to non-
linear radial particle velocities, and an emittance growth. T
emittance increases as long as the nonlinear force is in
same direction. However, the nonlinear forces decreas
the particle motion tends to lead the beam to a uniform d
sity distribution. When the distribution reaches the equil
rium, uniform density, the nonlinear forces vanish, but t
nonlinear radial velocities are at a maximum. At this poi
the emittance has grown to its maximum value. As the p
ticle distribution becomes nonuniform in the opposite se
that it was initially, the reversed nonlinear forces lead to
lessening of the nonlinear radial velocities, and an emitta
decrease. Within this model, the beam density distribut
will oscillate about the equilibrium distribution, with concu
rent emittance oscillations.

From this model, it is easy to estimate both the maxim
of the emittance oscillations and the equilibrium emittan
after Landau damping, from conservation of energy ar
ments. This approach is closely related to the nonlinear fr
energy approach@1,14,15# to estimate the emittance growt
in emittance-dominated beams, but with some differenc
which we will outline below. As pointed out in the nonlinea
free-energy analysis, the nonuniform beam has a greate
erage energy per particle than a uniform distribution w
equal rms size. As the beam density becomes uniform du
the nonlinear space-charge forces, the emittance can
found by equating the rms radial energy to the initial exc
space-charge potential of the beam, resulting from the c
servation of total beam energy.

Another approach is to calculate the initial emittan
growth rate using kinematic equations, and to calculate
magnitude of the emittance oscillation assuming that
emittance oscillation period is given by one-half a plas
period. Both approaches result in an equivalent value for
maximum emittance.

The equilibrium emittance can be found by assuming t
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at equilibrium, half the initial excess energy is in radial m
tion and half in stored potential energy. Thus, the equi
rium emittance is 1/& times the maximum emittance in th
early emittance oscillations~ignoring radial correlations!.
This relationship is confirmed in Fig. 1~b!.

The physics associated with this effect is related to,
somewhat different than that if the beam is in the emittan
dominated regime. In that case, as the beam relaxes
uniform distribution, the emittance causes a reordering
particles via wave breaking in phase space, and the co
ence is lost. As a result, all the emittance growth ove
quarter plasma period remains. Another way to think ab
this is that all the excess energy ends up in radial mo
because the decoherence of the beam due to the emit
prevents any long-term stored potential energy.

A. Initial excess potential energy

We will simplify the calculation of the excess potenti
energy of the initial, nonuniform beam if we assume that
charge density profile can be expressed by

r~r !5r01r1r , ~20!

up to a beam edge radius ofr e , and zero beyond. A uniform
beam with the same current and beam edge radius has
sity rc5r0@112/3(r1r e /r0)#. The radial electric field from
the space charge is given by

Er5
r0

2«0
r S 11

2

3

r1r

r0
D . ~21!

The radial space-charge force is given by

Fr5
r0

2g2«0
r S 11

2

3

r1r

r0
D ~22!

and the radial focusing force from the external solenoid t
would keep the uniform density beam in equilibrium is giv
by

Fext52
r0

2g2«0
r S 11

2

3

r1r e

r0
D . ~23!

The net force is given by

F total5
r1

3g2«0
r ~r 2r e!. ~24!

In Eqs. ~21!–~24!, we have neglected the small nonline
component resulting from the nonlinear part of the axial d
magnetic field@9#. This term has an additional factorI /I A ,
and, for the nominal case, causes only about a 10% ef
and is considered insignificant.

Note that we have set up this problem so that the be
edge radius will not change, but the density will vary with
it, to simplify the stored energy arguments.

In order to calculate the average excess potential ene
we need to calculate the average potential energy for both
nonuniform density case and the corresponding uniform d
sity case. We will do this using the prescription in@1#, where
the total potential energy of the beam is given by
-
-

t
-
a

f
er-
a
t
n
nce

e

en-

t

-

ct,

m

y,
he
n-

Wtotal5Wext1Wsc,E2Wsc,B5Wext1
Wsc,E

g2 , ~25!

whereWext is the potential energy due to the external focu
ing, Wsc,E is the potential energy due to the space-cha
electric field, andWsc,B is the potential energy due to th
space-charge magnetic field. We will useW to refer to the
total energy of the beam per unit length and per unit rad
~so we only have to perform the radial integration! andU to
refer to the average energy per particle. Note that the num
of particles per unit length and per radian is

N5
*0

r e~r01r1r !rdr

e
5

r0S 11
r1r e

r0
D r e

2

2e
. ~26!

The external potential is given by

Vext5
r0

4g2«0
r 2S 11

2

3

r1r e

r0
D , ~27!

and the potential energy from the external focusing is giv
by

W5E
0

r e
r~r !Vextrdr . ~28!

For the nonuniform case, this leads to

Wext,non5
r0

2

16g2«0
F11S 2

3
1

4

5D S r1r e

r0
D1

8

15S r1r e

r0
D 2G ,

~29!

and

Wext,un5
r0

2

16g2«0
F11

4

3 S r1r e

r0
D1

4

9 S r1r e

r0
D 2G ~30!

for the uniform case.
The stored energy from the space-charge electric fiel

given by

Wsc5
«0

2 E
0

r e
Er

2rdr , ~31!

whereEr is from Eq. ~21!. The net space-charge potenti
energy for the nonuniform case is then given by

Wsc,E,non2Wsc,B,non5
r0

2

32g2«0
F11

16

15S r1r e

r0
D1

16

54S r1r e

r0
D 2G .
~32!

The potential energy for the equilibrium case~letting r1
go to zero andr0 go to rc! is given by

Wsc,E,un2Wsc,B,un5
r0

2

32g2«0
F11

4

3 S r1r e

r0
D1

4

9 S r1r e

r0
D 2G .

~33!

The excess energy per unit length and unit radian is t
given by
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Wtotal,non2Wtotal,un5
r0

2

16g2«0
S 4

45
2

2

27D S r1r e

r0
D 2

. ~34!

The term linear in the differential densityr1 vanishes, as it
must, since the uniform-density case has the minimum
tential energy.

Using Eq.~26!, the average excess energy per particle
now

Uexcess5
er0r e

2

g2«0S 11
2r1r e

3r0
D

1

540S r1r e

r0
D 2

. ~35!

Note that sincer0r e
2 is proportional to the beam current, th

excess energy per particle is independent of the beam ra
and only depends on the beam current and the density
uniformity. This is not unexpected, since it is the same sc
ing as the beam’s potential depression.

When the distribution is uniform and the emittance is
maximum, all this energy per particle is kinetic, so

K 1

2
gmṙ2L 5

er0r e
2

g2«0S 11
2r1r e

3r0
D

1

540S r1r e

r0
D 2

, ~36!

or

^r 82&5
er0r e

2

g3mb2c2«0S 11
2r1r e

3r0
D

1

270S r1r e

r0
D 2

. ~37!

The current is given by

I 5n0r0pr e
2S 11

2r1r e

3r0
D , ~38!

which we use to eliminate the constant density term. Assu
ing that the divergence is uncorrelated with radius~we will
quantify this error in the next section!, the maximum radial,
rms emittance is

«uncorrelated52gbA^r 2&^r 82&

5
2

A135S 11
2r1r e

3r0
D A~ I /I Agb!

r1r e
2

r0
. ~39!

The emittance at equilibrium is 1/& times this maximum
emittance, as discussed earlier.

Equation ~39! predicts a normalized, rms emittance f
the nominal case shown in Fig. 1 of 581 mm mrad, with
effective beam nonuniformity of 130%@Fig. 1~c!#. This is a
very reasonable estimate@comparing to Fig. 1~c!#, but the
approximation that the charge density nonuniformity is line
probably limits its quantitative accuracy to 50% or so.

A key point is that radial correlations survive in the spac
charge dominated regime—in the emittance dominated
gime, correlations betweenr and r 8 average to zero.
o-

s

us,
n-
l-

-

n

r

-
e-

B. Estimate from initial emittance growth rate

We can also estimate the maximum emittance kinem
cally from the initial growth rate and knowing that the em
tance oscillates at twice the plasma frequency. The ini
increase in the emittance is from the nonlinear force,
~24!,

mg
D ṙ

Dt
5

er1

3g2«0
r ~r 2r e!, ~40!

or

Dr 85Dz
er1

g3mn0
23«0

r ~r 2r e!. ~41!

The ensemble averages for the radial emittance@defined in
Eq. ~1!# can be easily done, and we find

d« rms

dz
5

4er1r e
3

3A240g2mbc2«0

A2/5. ~42!

We have written the correlation term~theA2
5 ! separately to

see the effect of the radial correlations for this model. T
error in ignoring the correlations is to overestimate the ma
mum emittance by about 58%.

Note that the magnitude of the emittance oscillates w
half a plasma wavelength, but that the emittance grows fr
zero to maximum in a quarter plasma period. Thus we
sume that over a half plasma wavelength the emittance ob

« rms5«maxsinS 2pz

lp
D , ~43!

or

d« rms

dz
5

2p

lp
«maxcosS 2pz

l«
D . ~44!

Settingz50 and equating this to Eq.~42!, we immediately
find

«max5
2r e

A135g1/2b1/2 S r1r e

r0
D S I

I A
D 1/2

A2
5 . ~45!

This is the same result as we found previously, but with
additional correction factor due to the radial correlations t
exist in the space-charge-dominated regime.

This is a nice result because, comparing Eqs.~39! and
~45!, we see the correspondence of the kinematic and ene
conservation approaches in the space-charge-dominate
gime. The kinematic approach includes information ab
the radial correlations; otherwise, they are equivalent.

C. Comparison of the emittance formulas with the numerical
simulations, and discussion

Using Eq.~45!, we predict that the maximum emittanc
growth is about 3.731024 m, in reasonable agreement wit
Fig. 1~b!. The error~about 40%! is probably due to the fac
that there is both a quadratic and cubic component to
space-charge force. The maximum beam divergence aft
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mm is shown in Fig. 4~a!, and is 19 micro-radians, in goo
agreement with Eq.~21!. In Fig. 4~b!, we see the density
profile at the first emittance maximum, and the profile
essentially uniform. Thus, all the excess potential energy
contributed to the emittance growth. In Fig. 4~c!, we see the
beam’s radial phase space at the first emittance maxim
Its shape is similar to that in Fig. 4~a!, as assumed in the
kinematic model.

In Fig. 5 we show the emittance evolution for a 2-Me
4-kA beam. The maximum and equilibrium emittance a
about 35% greater than for the 4-MeV, 4-kA beam~Fig. 1!,
demonstrating the energy scaling shown in Eqs.~39! and
~45!.

FIG. 4. ~a! Phase space after 2 mm,~b! density profile at first
emittance maximum, and~c! beam phase-space profile at first em
tance maximum.
as

m.

e

In Fig. 6 we show the emittance evolution for a 4-Me
2-kA beam. The maximum and equilibrium are about 40
lower than for the 4-MeV, 4-kA beam, also demonstrati
the energy scaling shown in Eqs.~39! and~45!. Note that the
predicted increase in the plasma wavelength is seen.

Finally, in Fig. 7~a! we show the emittance evolution for
beam with a smaller effective initial density nonuniformi
~about 30%!, shown in Fig. 7~b!. Equations~39! and ~45!
predict an emittance decrease of about 2.8 using these in
density nonuniformity magnitudes, in very good agreem
with the decrease in the emittance in the simulation. N
that with the smaller effective current density nonuniformi
more plasma periods are required for the Landau dampi

Let us consider the form of Figs. 1~d! and 1~e!. The emit-
tance is still correlated in the equilibrium regime, but n
correlated in the same way as initially, as shown in Figs. 4~a!
and 4~c!. However, we can reasonably assume that the c
relations decrease the equilibrium emittance by a factor
1/&, so the equilibrium emittance is about1

2 of the total
allowable, uncorrelated emittance maximum, Eq.~39!, as
calculated using the excess potential energy. This leads
prediction of 291 mm mrad for the equilibrium emittanc
which is a good prediction of the result in Fig. 1~b!.

Finally, note that the effect of having a significant unco
related emittance would be to prematurely mix up the cor
lations, leading to an earlier establishment of an equilibri
emittance. This effect does not occur in a strictly spa
charge-dominated regime.

V. LONG-TERM EMITTANCE STABILITY

The final emittance thermalization feature we need to
derstand is the long-term stability of the equilibrium. Fro

FIG. 5. 2-MeV, 4-kA case, emittance versus axial distance

FIG. 6. 4-MeV, 2-kA case, emittance versus axial distance
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conservation of energy considerations, any change in
equilibrium emittance must occur from a transfer of ene
between the radial and axial directions. In our problem,
external magnetic field is purely axial, and any transfer
energy must be due to the diamagnetic magnetic field.

The time integrated axial work on a given particle is

Uz5eE Br~r !nu~r !dz, ~46!

where we user 5r (z) over the particle’s orbit. The azi
muthal velocity is given by Busch’s theorem,

nu52
e

gmr E0

r

@Bext~r !1Bz,dia~r !#rdr . ~47!

We write the diamagnetic axial field in terms of a Four
decomposition

Bz,dia5(
k

B̃z,k cos~kz1fk!, ~48!

and the azimuthal velocity is

nu52
e

gmr H r 2

2
Bext1(

k
cos~kz1fz!E

0

r

B̃z,krdr J .

~49!

Maxwell’s equation for the divergence of the magnetic fie
gives us

FIG. 7. ~a! Emittance versus axial position for density nonun
formity of 30% and~b! initial density profile for density nonunifor-
mity of 30%.
e
y
e
f

Br ,dia5(
k

k

r S E
0

r

rB̃z,kdr D sin~kz1fk!. ~50!

Using I k5*0
r rB̃z,kdr, we rewrite the axial work as

Uz52
e

gm E H Bext

2 (
k

kIk sin~kz1fk!1
1

r 2 (
k

I k

3cos~kz1fk!(
k

kIk sin~kz1fk!J dz. ~51!

Note that eachk term eventually averages to zero, includin
the constant (k50) term. Thus, any long-term average e
change of energy between the axial to the transverse d
tions depends on correlations with the radial motion, wh
are small. This results in the long-term stability of the eq
librium emittance, as seen in Fig. 1~b!.
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APPENDIX: THERMALIZATION FROM WAVE
BREAKING IN PHASE SPACE

„EMITTANCE-DOMINATED REGIME …

The purpose of this appendix is not to provide a comp
hensive analysis of the transition between the space-ch
and emittance-dominated regimes. That is a complex is
and beyond the scope of this paper. Rather, it is to prov
insight into understanding over what range of initial m
matches these emittance oscillations will occur for a be
with zero initial thermal emittance.

An important thermalization mechanism preventing em
tance oscillations for many types of beams is wave break
in phase space@16,17#. Wave breaking occurs when phas
space becomes double valued, and the beam loses lamin
as kinetic energy is converted to potential energy. In t
case, the radial correlations become mixed up and the e
tance quits oscillating, leading to a thermalization effect. B
cause this wave breaking occurs during the first half of
emittance oscillation period, the characteristic time for th
malization is a quarter plasma period.

For the beams considered in this paper, this wa
breaking mechanism is negligible, but it does dominate
many cases, which have been studied in detail using the n
linear free-energy approach@1,14,15#. In order to complete
our understanding of the thermalization process for hi
brightness induction linac electron beams, we need to un
stand the conditions where wave breaking leads to therm
zation. First, we will consider the case where the init
emittance is zero, but the initial beam-current density is n
uniform. We will see that wave breaking only occurs at t
radial edges of the distribution. Next, we will consider t
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case where the initial density distribution is uniform, b
there is some initial emittance leading to a curvature in ph
space. From this approach, we will find the characteri
initial emittance that leads to wave breaking. For this ca
wave breaking occurs when the initial phase-space curva
is large enough to overcome the space-charge repu
force. In all cases, we will assume that the initial therm
emittance of the beam is zero.

Initial zero emittance case. For this case, we assume th
the initial density distribution is nonuniform, but that th
initial emittance is zero~the beam’s distribution in phas
space is a straight line!. The approximate condition for wav
breaking for a particle initially at a radiusr is given by@17#

E
0

r

nr~n!dn.r 2r~r !, ~A1!

where n is a dummy variable of integration. Thus, wav
breaking is present when the charge density drops to
than 1

2 that of the average density out to that point. Th
condition is easy to derive, assuming that every particle h
radial equation of motion of the form

r 95a~x!cos~kpz!, ~A2!

wherex is an index to keep track of each particle.
For a mostly matched, nearly uniform density beam, t

condition does not occur, except in the radial tail of the d
tribution. Thus wave breaking will occur in the tail of
distribution heavily peaked on axis, but will not occur in th
main body of a hollow distribution, as we have seen in
previous numerical simulations.

Uniform initial density case. For the second case, we a
sume that the density is uniform, but that there is an ini
beam emittance. There are an infinite number of poss
initial configurations in radial phase space with a given em
s

v.

ys

rt

l

t
e
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e,
re
ve
l

ss
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e

l
le
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tance; for simplicity, we will assume the beam is an ellip
in phase space, where the beam divergence obeys

r 825~r e
22r 2!

«2~2bg!2

r e
4 . ~A3!

Using the assumed form for the radial equation of motio
Eq. ~A2!, we find that wave breaking for this case occurs
dr/dx50, or

x5
r e

F11S «

2bgr e
2kp

sin~kpz! D 2G1/2. ~A4!

Note that wave breaking will always occur for any nonze
emittance, but only right at the edge of the beam for sm
emittances. For thermalization of the bulk of the beam,
wave breaking needs to occur in the middle of the beam
the emittance must exceed the characteristic value of

«w2b54r eA~ I /I A!/gb. ~A5!

For the case studied in this paper, this characteristic e
tance is about 0.02 m, which is nearly two orders of mag
tude larger than the actual emittances induced by the den
nonuniformity. Thus, thermalization due to wave breaking
negligible in the case considered. Note that the parame
scale the same as in Eqs.~39! and ~45!, and that the emit-
tance from a density nonuniformity of the type studied in th
paper will never exceed the wave-breaking characteri
value.

For comparison, we calculate the wave-breaking char
teristic emittance for a hydrogen-ion beam, withg;2. For a
beam current of 100 mA and a beam radius of 1 mm,
characteristic wave breaking emittance is less than
mm mrad. Thus, thermalization due to wave breaking i
much more common phenomena for beams in that regim
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