PHYSICAL REVIEW E VOLUME 60, NUMBER 2 AUGUST 1999

Thermalization of an intense, space-charge-dominated electron beam in a long focusing channel

Bruce E. Carlsten
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A continuous electron beam with a correlated emittance will eventually thermalize. Initially, the beam
emittance for an intense, high-brightness, space-charge-dominated beam will oscillate, but after a sufficiently
long time, it will reach an equilibrium value. The emittance oscillations are due to coherent transverse plasma
oscillations in the beam and are a manifestation of periodic energy exchange between potential and kinetic
energies. The beam eventually attains an equilibrium emittance, as the beam equipartitions the kinetic and
potential energies. This equipartioning is reached as the beam thermalizes due to a form of Landau damping of
the radial oscillations at different radial positions within the beam. Slight differences in the transverse plasma
oscillation frequency for different radial positions lead to incoherence in the oscillations. In this paper, we
calculate the equilibrium time scales required for equipartioning. We show that the equilibrium emittance
scalings and magnitude can be predicted by conservation of energy considerations. In addition, we show that,
in the space-charge dominated regime, there is a correspondence between the energy-conservation approach
and the kinematic approacl51063-651X99)10608-1

PACS numbgs): 03.50.De, 29.27.Bd, 41.75.Ht

[. INTRODUCTION However, a large number of these oscillations could occur
for an emerging class of high-brightness, low-gradient, high-

High-current, low-emittance, high-brightness, space-<urrent induction linacs with long-pulse electron beams
charge-dominated electron beams in long focusing channe|g,8].

often demonstrate emittance oscillations, where the rms, nor- |t is important to point out that these emittance oscilla-

malized radial beam emittance is defined by tions do not occur for several classes of charged particle
beams, including most ion beams and low-brightness elec-
e=2ByV(r2)(r'2—(rr")?, (1)  tron beams. For these types of beams, the initial mismatch

leads to an emittance growth that asymptotes to a final value

where the brackets refer to ensemble averages over the pamnd does not oscillate. This occurs when there is overtaking,
ticle distribution at a single axial locatior§ is the beam’s or wave breaking, in radial phase space. This overtaking
axial velocity normalized to the speed of light,s the rela- takes place within a quarter transverse plasma period, and
tivistic mass factory is the radial coordinate of the particles, transforms an initially simply correlated emittance to one
and the prime refers to an axial derivative. Although this isthat is not simply correlated and effectively unrecoverable,
not a strictly conserved quantitit does not grow in an axial and thus its magnitude will not oscillate. The split between
magnetic field, this is an appropriate emittance definition these regimes will be more clearly defined in the Appendix.
here because we will assume that the beam has no initi#lor the purposes of this paper, we will call the regime where
thermal emittance and that the beam has zero canonical ane wave breaking occurs to be space-charge dominated and
gular momentum. The emittance is a direct measure of théhe regime where wave breaking occurs to be emittance
beam’s quality[1], and the definition here keeps it unam- dominated. Note that these are not the usual definitions, but
biguous while the beam is in an external axial magnetic fieldhese definitions are more relevant to this study. The emit-
[2]. tance evolution in the emittance-dominated regime can be

Emittance oscillations are common in rf photoinjectorsdescribed well by thermodynamic considerations and is for-
[3—6] and other high-brightness electron beams. The emitmally well understood1]. It is the purpose of this paper to
tance growth is due to mismatches between particles’ injecpresent an equivalent understanding of the emittance evolu-
tion conditions and their equilibrium orbits. These mis-tion in the space-charge dominated regime where these emit-
matches can be caused by a nonequilibrium beam densityance oscillations occur.
nonlinear transverse forces in a gun or focusing section, or Over a sufficiently long distance, these emittance oscilla-
other nonlinearities. The emittance growth results from rations will damp out, leading to an effective thermalized emit-
dial nonlinearities in the particles’ oscillations about theirtance, at an intermediate value. A typical simulation is
equilibrium radii. To first order, these orbit oscillations are in shown in Fig. 1, of a 4-kA, 4-MeV, long-pulse electron beam
phase, and the emittance growth vanishes at intervals of halfith a 3-cm radius, using the particle-pushing cazlece
plasma periods, and is thereby periodic. These emittance of3]. We see severdbn the order of 3Doscillations, gradu-
cillations have been analyzed in detail for rf photoinjectorsally decaying in amplitude to an intermediate value, followed
[5,6]. For rf photoinjectors, the beam is rapidly acceleratedby some minor emittance oscillations due to beating.
and only goes through a few emittance oscillations by the In this simulation, an initially zero-emittance beam, with
time it reaches its final application, due to the time dilationnonuniform charge density, was injected into a transport
of a relativistic beam and the high accelerating gradientchannel with a constant external magnetic field. The external
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FIG. 1. (a) Beam rms radius versus axial distance, nominal ¢dddeV, 4 kA); (b) emittance versus axial distance, nominal cdsg;
initial beam density(d) final beam radial phase space; aeflbeam radial phase space at 375 m.

field was adjusted so that the beam rms radius was nearthe beam. As a group, the particles are stepped axially from
matched. The beam was assumed to have zero canonical ahe origin to the end of the problem. For these simulations, a
gular momentum. The beam energy was 4 MeV and bear).2-mm axial step size and 16 000 particles per axial slice
current was 4 kA. This problem geometry was chosen tovere used to ensure sufficient numerical stability.
unambiguously demonstrate the important physics of the In this simulation and the following analysis we have ini-
emittance oscillations and equipartioning. Thece code tiated the beam mismatch with a nonuniform beam density.
self-consistently pushes particles using the Lorentz forcén more realistic cases, the mismatch occurs from a combi-
equation, including the beam’s self radial electric and axialhation of nonuniform beam density and nonlinear external
magnetic fieldthe beam’s diamagnetic fieldBusch’s theo- focusing forces. However, the phenomena described in this
rem [10] is used to calculate the azimuthal motion of the paper are mostly independent of the exact cause of the mis-
particles. The code uses the long-beam approximation, imatch and also occur for mismatches due to nonlinear focus-
which Gauss’s law is used for the radial electric field anding.

Ampere’s law is used for the axial magnetic field. A collec- For the nominal case, we have chosen a density nonuni-
tion of particles at the same axial location is used to describéorm of about 100%as defined in the following analysgjsn
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order to generate emittances of several hundred mm mrad r
which is typical for new and proposed high-brightness induc-
tion accelerators. The following analysis assumes relatively
small density nonuniformities; however, the analysis gives
proper scaling laws and even relatively good quantitative
estimates when compared to the simulationihin a factor
of two). Also, we have assumed that the density profile is
linear with radius. This was done because a more general
density function would lead to essentially the same results as
found here, with some slightly different numerical factors.
This approximation allows us to simply characterize the
beam density nonuniformity with a single parameter in order
to make an approximate estimate of the emittance evolution.
We have plotted in Fig. 1 the simulation results for the
nominal case, described above, for an overall transport dis-
tance of 400 m. In Fig. (&), we see the beam rms radius
versus axial distance. In Fig.(d), we see the beam rms
emittance versus axial distance. In Figc)l we see the

FIG. 2. Hypothetical beam radial phase space, showing both
correlated and uncorrelated parts to the emittance.

quired for Landau damping by considering the range of

beam’s initial current density as a function of radial position, - , . ,
and in Fig. 1d) we see the final beam phase spaee’. In transverse plasma oscillation frequencies at different radial
9. P P i locations within the beam.

Fig. (), we see the beam phase space at a second, slightly Then we describe the emittance growth from the point of

different axial location(375 m).. L ) ) view of the excess potential energy of the system, and pre-

We see four key features in this simulation. First, we Se&jict hoth the maximum of the emittance oscillations and the
very pronounced large emittance oscillations at short axiafhermalized emittance. These predictions are in good agree-
distances. Second, these oscillations damp out to an equilibyent with the simulations in terms of both absolute magni-
rium emittance somewhat larger than the mean of the oscily,ges and scalings with beam parameters. We consider the
lations. Third, the eqU”ibriUm emittance is stable over Veryeffect of radial correlations in the emittance growth' and
long axial distances. Fourth, although the equilibrium emit-show that both the energy-conservation and kinematic ap-
tance is approximately constant, the beam phase space pgoaches yield equivalent results.
changing, with kinks moving up and down the particle In the final section, we show that any long-term emittance
phase-space distribution. decay or growth must be on extremely long axial scales.

We will explain these features in this paper, for beams in
the space-charge-dominated regime. As described above, tne
emittance oscillations arise from coherent transverse plasma
oscillations within the beam. However, the phase of the os-
cillations vary slightly at different radial positions, and the In this section we estimate the scale lengths required for
oscillations are thus Landau damped to a stable equilibriunthe beam’s phase space to reach thermal equilibrium result-
value. This equilibrium emittance is a thermalized, but cor-ing from Coulomb collisions between particles, and show
related emittance, as seen in Fig&d)land Xe). Long-term that this mechanism is insignificant over the axial distances
beating of the collection of slightly different frequencies ac-we are considering. We consider the phase space shown in
count for the slight re-emergence of the emittance oscillaFig. 2. There is a correlated beam emittance with some small
tions. uncorrelated component. We consider purely transverse Cou-

Both the peak of the emittance oscillations and the equilomb collisions between particles that are slightly radially
librium emittance scale linearly with beam radius, linearly offset, as shown in Fig. 3. This type of collision transfers
with the square root of the current, and inversely with thetransverse energy to transverse energy. This class of colli-
square root of the relativistic mass factor. sions is the dominant one leading to transverse thermaliza-

In addition to wave breaking in phase space fortion, and will lead to an increase of the uncorrelated emit-
emittance-dominated beams, this emittance-oscillationance, until an equilibrium level is reached. The mechanism
mechanism is not relevant if collisions between particlescan be understood by considering Figs. 2 and 3. Particles at
thermalize the beam in a short distance. However, for thesslightly different radial positions, but with some uncorrelated
types of beams, the collisional mechanism requires thouemittance, will undergo radial Coulomb scatterings, which
sands of meters for thermalization, and is not significant. will tend to give particles at nearby radial positions the same

Another important conclusion in this paper is that, in therms radial divergence. Slowly, the beam’s phase space will
space-charge-dominated regime, a kinematic analysis of thevolve so that the radial rms divergence is the same at all
beam emittance evolution is equivalent to an analysis base@dial positions within the beam. The interacting particles,
on energy conservation. This correspondence is not true ishown in Fig. 3, initially have identical angular momentum,
general for emittance-dominated electron beams. but a relative radial velocity due to the uncorrelated emit-

In the next section, we verify that the thermalization dis-tance. There are no scatterings without the uncorrelated emit-
tance due to collisions between particles is extremely longtance; the rate of thermalization depends on the magnitude of
In the following section, we estimate the axial distance rethe uncorrelated emittance. Note that this mechanism will

THERMALIZATION DUE TO COLLISIONS BETWEEN
PARTICLES
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y where A is the number of collisiond, is the beam current,
andr, is the beam edge radius.
\S The rate of increase in the transverse rms velocity transfer

is thus given by
W d(Av)2 .

J 8le® db .
dtem. B fiﬁ?’cmzvrmbmﬂso)z . ©

After integration over all impact parameters and transferring
variables to the beam fram@ viyp=Avem/ v, Viap= Vrel! Vs
andt,g,=temy), we have

d(Av)2, 8le3c® A
= 2, 5672 2N
FIG. 3. Radial Coulomb collision between two particles due to dt reBy oM viay(47eo)
uncorrelated emittance. 8lec®
= W In A, (6)
also lead to an uncorrelated spread in azimuthal velocities, AlePY Yiab

which will slightly modify the transfer rate of radial diver-
gence between radial positions, as we will see below.
Altgrna}tive scattering meqhanisr_ns are not importanzjis always close to 101
Relativistic beams have very little axial velocity spread, an The beam’s unnormalized emittance esﬁ :[AVzt/
the transfer from axial energy to transverse energy is insig- , ,. » o n L= el
nificant. Also, transverse collisions that transfer transvers€ cJre (the missing facto_r of 2 resglts from equipartitioning
energy to axial energithe Boersch effedil1—-13) provide | etween the rad_lal and azimuthal dlrectl))ra_nd the nprmal-
some damping of the transverse energy, but do not chandéed e2m|tt3ar130e is related to the unnlormahze.d e-m|tltance by
the thermalization scale length at the level we are calculattn=¢€ud 8 y"- Note that the rms relative velocity is given by
ing. s_unzrev,ab/ﬁc. The unnormalized emittance growth is
The thermalization rate from transverse collisions will 9iven by
slow down, as the transverse energy at a given radial position
grows to the equilibrium value, due to equilibrium forces. _
We will not consider these equilibrium forces, and just esti- dt If\y5,83sun
mate the equilibrium time by dividing the equilibrium trans-
verse energy by the initial transverse energy growth rateand the normalized emittance growth is given by
This will underestimate the equilibrium distance, but can be
used to show that this mechanism is unimportant for typical 3 2‘"eCfe| A ®)
high-brightness, relativistic beams. We will assume that the n=? 125252 na-
beam is mostly uniform in density.
The transverse momentum transfer for the two particles ifFor a beam of about 4 kA and a relativistic mass factor of
Fig. 3 in their center-of-mass frame is given by about 10, over a kilometer is required for an emittance
growth of 200 mm mrad.

where we have usdd =mc*4 e, /e, which is about 17 KA,
and the logarithm of the ratio of allowable impact parameters

de2, 8lec?r,

InA (7

" Vebdmey’ @ Iil. ESTIMATING TIME REQUIRED FOR
THERMALIZATION DUE TO LANDAU DAMPING

whereb is their impact parametee is the electronic charge, We can estimate the time required for the Landau damp-

€o IS the permitivity of free Space, and is the particles’ ing to occur, by considering the spread of the periods of the
relative velocity in their frame of reference. The averagey . < arse plasma oscillations

energy transfer is very small for any particle, but the average The beam is space-charge-dominated, and we will assume

energy transfe_r ra_te does not have to be. The transverse Vfiat the particle motion is laminar with no particle orbits
locity transfer is given by

crossing. The transverse motion of a particle in a slice of the
beam in a uniform focusing channel of normalized strength

(Av)2, = 4e’ 3) K is given by
SN My b?(4meg)”’
" KS
where nowm is the electronic mass. Now the number of o"+Ko=-—==0, ©

collisions per second that a single electron sees in its center-

of-mass frame Is given by whereo is the transverse coordinate of the particle &gds

Y | the normalized space-charge forc&=21(r)/1,v°5%,
( C'm') =— ve(27b)db, (4)  wherel(r) is the current enclosed by the particle’s orbit. The
sec/ mrgByce equilibrium particle radius is given by
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Teq= VKs/K. (10
We write the particle radius as
0= 06+ 0, (11

BRUCE E. CARLSTEN
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For the density variation in Fig. 1J,,s/J about 0.7, this
formula predicts that the equilibrium is reached in about 30
plasma oscillation periods; from Fig(k), we see that equi-
librium is reached in about 35 periods. This agreement
shows that the Landau damping model is consistent with the
simulation. Examination of the final phase-space pkg.

and we assume that all particles in the beam are very nearkc)] shows that different parts of the slice are at different
matched to their equilibrium orbitshe beam is rms matched phases of the oscillations. A second phase-space plot, a little

and the density nonuniformity is smalWe then come up
with this differential equation for the displacement:

S 2
=
For small displacements, we can substitu&mg/aeq)2 for
(5/09(,)2, and this equation has the solution

2
& +| 2K +K ) Te=0. (12

o

Oeq

8= 8p+ 61 cos)z, (13
where
12 Sms| ®
Q=KY2 o4 | |, (14)
Oeq
K( 5rms) 2
g
So=———75 20 (15
2K +K rms)
Oeq

and &, is given by the initial offset from the particle’s equi-

librium position. Equationg13) and (15 can be solved to

bit upstrean{Fig. 1(e)], shows that the oscillation phases of
different slice locations have changed, but the rms emittance
is basically unchanged.

Note that the plasma wavelength for the nominal case is
5.1 m, or the emittance oscillation period is about 2.55 m, in
excellent agreement with that shown in Figbjl

IV. ESTIMATING THE MAXIMUM EMITTANCE
AND THE EQUILIBRIUM EMITTANCE
FROM ENERGY CONSERVATION ARGUMENTS

In the space-charge-dominated regime, the emittance
growth is mostly due to the radial velocity of the particles,
and the effect of the radial positions can be neglected. The
short-range emittance oscillations have the following fea-
tures. Initially, there is no emittance, as the radial velocity is
zero, but there are nonlinear forces on the particles. These
nonlinear forcegwhich vanish in an rms senskead to non-
linear radial particle velocities, and an emittance growth. The
emittance increases as long as the nonlinear force is in the
same direction. However, the nonlinear forces decrease as
the particle motion tends to lead the beam to a uniform den-

find the particle’s orbit exactly to this order; however, for Sity distribution. When the distribution reaches the equilib-
estimating the time required for Landau damping, this is nofium, uniform density, the nonlinear forces vanish, but the

necessary.

Note that the equilibrium orbit radius is given hy,,
=rJ/Jms Wherer is the particle injection radiusl is the
average current density up the particle’s orbit, dpg is the
rms current density. The initial orbit offset is given I3y
=0ef1—VIms/J), and the rms offset is close téfms
= 5(2)/2. The particle’s oscillation frequency is given by

Q) =K"2+3(VIms/I—1)%]. (16)

nonlinear radial velocities are at a maximum. At this point,
the emittance has grown to its maximum value. As the par-
ticle distribution becomes nonuniform in the opposite sense
that it was initially, the reversed nonlinear forces lead to a
lessening of the nonlinear radial velocities, and an emittance
decrease. Within this model, the beam density distribution
will oscillate about the equilibrium distribution, with concur-
rent emittance oscillations.

From this model, it is easy to estimate both the maximum
of the emittance oscillations and the equilibrium emittance

At small axial locations, the particles’ oscillations stay in after Landau damping, from conservation of energy argu-
phase, resulting in the coherent transverse oscillations lea¢inents. This approach is closely related to the nonlinear free-

ing to the emittance oscillations shown in Figb}L

energy approacfl,14,15 to estimate the emittance growth

The transverse oscillations are out of phase at an axidh emittance-dominated beams, but with some differences,
location z, 4ngay When the oscillations of the rms trajectory which we will outline below. As pointed out in the nonlinear

and the edge trajectory are 90 degrees out of phase:

(2K 1+ 3 (VI3 121~ (2K) 4 2 ngai=
an

or

Z| andau 1

Zplasma ( \/ers/‘J - 1)2 ,

(18)

free-energy analysis, the nonuniform beam has a greater av-
erage energy per particle than a uniform distribution with
equal rms size. As the beam density becomes uniform due to
the nonlinear space-charge forces, the emittance can be
found by equating the rms radial energy to the initial excess
space-charge potential of the beam, resulting from the con-
servation of total beam energy.

Another approach is to calculate the initial emittance
growth rate using kinematic equations, and to calculate the
magnitude of the emittance oscillation assuming that the
emittance oscillation period is given by one-half a plasma

wherez,,smais the distance required for a plasma oscillation, period. Both approaches result in an equivalent value for the

Zplasma 2l (2K) Ve eV (1/14) 73,83- (19

maximum emittance.
The equilibrium emittance can be found by assuming that
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at equilibrium, half the initial excess energy is in radial mo- Weeg
tion and half in stored potential energy. Thus, the equilib- Wiota™ Wextt Weeg = Wseg= Wext ™ 7 (25
rium emittance is 12 times the maximum emittance in the

early emittance oscillationgignoring radial correlations  whereW,,, is the potential energy due to the external focus-
This relationship is confirmed in Fig(t). ing, W,.e is the potential energy due to the space-charge
The physics associated with this effect is related 1o, bugjectric field, andWs.g is the potential energy due to the
somewhat different than that if the beam is in the emittancegpace-charge magnetic field. We will ugéto refer to the
dominated regime. In that case, as the beam relaxes 10 gta| energy of the beam per unit length and per unit radian
uniform distribution, the emittance causes a reordering ofso we only have to perform the radial integrati@md U to

particles via wave breaking in phase space, and the cohefafer to the average energy per particle. Note that the number
ence is lost. As a result, all the emittance growth over & particles per unit length and per radian is

guarter plasma period remains. Another way to think about

this is that all the excess energy ends up in radial motion pile| 5

because the decoherence of the beam due to the emittance fge(po+p1r)rdr po| 1+ ——]re

prevents any long-term stored potential energy. N= = = e (26)

A. Initial excess potential energy The external potential is given by
We will simplify the calculation of the excess potential
energy of the initial, nonuniform beam if we assume that the __Po rz( E Pile (27)
charge density profile can be expressed by 4% 3 po )’
p(r)=po+pal, (20 and the potential energy from the external focusing is given

up to a beam edge radius f, and zero beyond. A uniform

beam with the same current and beam edge radius has den- le

sity pe=po[ 1+ 2/3(p1r o/ po)]. The radial electric field from W= f o PNVexrdr. (28)
the space charge is given by

For the nonuniform case, this leads to

Po 2 plr)
E,=— =—. 21
" 2s 3 po @) _ p(z) 1 2 4\ (pire 8 [pire|?
) o ext,non 16’)/280 + § + g Po + 1_5 Po )
The radial space-charge force is given by (29)
2 pqr
Fo=l r(1+—’i) (22 and
2y%eg 3 po 2 )
. . . _ Po 4(pire|  4[pile
and the radial focusing force from the external solenoid that Wext,un_m + 3 PR + 9 o (30
would keep the uniform density beam in equilibrium is given
by for the uniform case.
) The stored energy from the space-charge electric field is
Po Plre) given by
Fexm=—5—2—f| 1+ = . 23
ext 2'}/280 ( 3 Po ( )
€p e 2
The net force is given by Wse=~> jo Efrdr, (3D

(24) whereE, is from Eq.(21). The net space-charge potential
energy for the nonuniform case is then given by

o) o]

P1
Ftota|=mf(f —re).

In Egs. (21)—(24), we have neglected the small nonlinear pg
component resulting from the nonlinear part of the axial dia-YVsc,non— Wsc,B,non:E + 15 + 54
magnetic field[9]. This term has an additional factofl 5, 7 eo po po
and, for the nominal case, causes only about a 10% effect, (32
and is considered insignificant. The potential energy for the equilibrium cadetting p;
Note that we have set up this problem so that the beargo to zero ang, go to p.) is given by
edge radius will not change, but the density will vary within
4(pire| 4[pire z
In order to calculate the average excess potential energy,Wsc,E,un—Wsc,B,un=m + 3 P + 9 P .
we need to calculate the average potential energy for both the 0 0 0
sity case. We will do this using the prescription i, where  The excess energy per unit length and unit radian is thus
the total potential energy of the beam is given by given by

it, to simplify the stored energy arguments. pé
nonuniform density case and the corresponding uniform den- (33
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2 4 2 2 B. Estimate from initial emittance growth rate
W _Ww __Po [ A Zl[Pile (34)
total,non ¥total,un™ 167780 45 27\ po | - We can also estimate the maximum emittance kinemati-

cally from the initial growth rate and knowing that the emit-
The term linear in the differential densipy vanishes, as it tance oscillates at twice the plasma frequency. The initial
must, since the uniform-density case has the minimum poincrease in the emittance is from the nonlinear force, Eq.

tential energy. (24),
Using Eq.(26), the average excess energy per particle is ;
now m Ar__eh r(r—re) (40
yAt 3’}/280 e
2 2
epole 1 (pire
_ i or
Uexcess 5 2plre 540( po ) (35)
yeeo| 1+ 3p ep;
0 ’

Ar'=Az r(r—reg). 41
SmiZasg (T (41

Note that sinceporg is proportional to the beam current, the

excess energy per particle is independent of the beam radiukjie ensemble averages for the radial emittguizgdined in
and only depends on the beam current and the density nofed. (1)] can be easily done, and we find

uniformity. This is not unexpected, since it is the same scal-

ing as the beam’s potential depression. dems 4ep1r§ NI
When the distribution is uniform and the emittance is a dz 3240 ?mBce, 2/5. (42)

maximum, all this energy per particle is kinetic, so

1 2 1 2 We have written the correlation terfthe \/E) separately to
<_ ym'r2> — Cpale _(plre) . (36) see the effect of the radial correlations for this model. The
2 ) 2p1re| 540\ po error in ignoring the correlations is to overestimate the maxi-
Yool 1+ 3po mum emittance by about 58%.
Note that the magnitude of the emittance oscillates with
or half a plasma wavelength, but that the emittance grows from
zero to maximum in a quarter plasma period. Thus we as-

epnr? 1 r.\2 sume that over a half plasma wavelength the emittance obeys
2 Pole Pile
(%)= ool e (@
73mB2C280 1+ 2p1re 270 Po _ i 2’7TZ
3po €rms= EmaxSiN —)\p , (43
The current is given by or
2p4r deyms 27 27z
- 2 e —oms_ =7 -°-
| = vopomra| 1+ 300 ) (39 dz EmaxCO§ 3 - (44)
which we use to eliminate the constant density term. Assumoettingz=0 and equating this to Eq42), we immediately
ing that the divergence is uncorrelated with radug will fin
guantify this error in the next sectiprthe maximum radial, 2
rms emittance is _ 2re pale|( | \/Z (45)
Emax J135y2812\ pg |14 5

Euncorrelated 2 VBV < r 2>< r’ 2>

) This is the same result as we found previously, but with the

2 pile additional correction factor due to the radial correlations that
= 2p1fe V(I TAYB) P (39) exist in the space-charge-dominated regime.
\/135(1+ 3 ) This is a nice result because, comparing E@®) and
0

(45), we see the correspondence of the kinematic and energy-
conservation approaches in the space-charge-dominated re-
gime. The kinematic approach includes information about
the radial correlations; otherwise, they are equivalent.

The emittance at equilibrium is 2 times this maximum
emittance, as discussed earlier.

Equation (39) predicts a normalized, rms emittance for
the nominal case shown in Fig. 1 of 581 mm mrad, with an
effective beam nonuniformity of 130%-ig. 1(c)]. This is a
very reasonable estimafeomparing to Fig. (c)], but the
approximation that the charge density nonuniformity is linear Using Eq.(45), we predict that the maximum emittance
probably limits its quantitative accuracy to 50% or so. growth is about 3.% 10 *m, in reasonable agreement with

A key point is that radial correlations survive in the space-Fig. 1(b). The error(about 40% is probably due to the fact
charge dominated regime—in the emittance dominated rethat there is both a quadratic and cubic component to the
gime, correlations betweanandr’ average to zero. space-charge force. The maximum beam divergence after 2

C. Comparison of the emittance formulas with the numerical
simulations, and discussion
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@ FIG. 5. 2-MeV, 4-kA case, emittance versus axial distance.
5 In Fig. 6 we show the emittance evolution for a 4-MeV,
2-kA beam. The maximum and equilibrium are about 40%
% lower than for the 4-MeV, 4-kA beam, also demonstrating
s 1.5 the energy scaling shown in Eq89) and(45). Note that the
= predicted increase in the plasma wavelength is seen.
g 4 Finally, in Fig. 7a) we show the emittance evolution for a
3 beam with a smaller effective initial density nonuniformity
< (about 30%, shown in Fig. Tb). Equations(39) and (45)
g 0.51 predict an emittance decrease of about 2.8 using these initial
o density nonuniformity magnitudes, in very good agreement
0 ‘ . . ‘ with the decrease in the emittance in the simulation. Note
0 1 2 3 4 that with the smaller effective current density nonuniformity,
r(cm) more plasma periods are required for the Landau damping.
(b) Let us consider the form of Figs(d) and Xe). The emit-
tance is still correlated in the equilibrium regime, but not
4 correlated in the same way as initially, as shown in Figa) 4
W and 4c). However, we can reasonably assume that the cor-
5] relations decrease the equilibrium emittance by a factor of
1W2, so the equilibrium emittance is abogtof the total
%g allowable, uncorrelated emittance maximum, E8&9), as
g 07 calculated using the excess potential energy. This leads to a
- prediction of 291 mmmrad for the equilibrium emittance,
24 which is a good prediction of the result in Figlbl
Finally, note that the effect of having a significant uncor-
related emittance would be to prematurely mix up the corre-
-4 0 ‘1 ‘2 3 4 lations, leading to an earlier establishment of an equilibrium

emittance. This effect does not occur in a strictly space-
rem) charge-dominated regime.
(©)
V. LONG-TERM EMITTANCE STABILITY
FIG. 4. (a) Phase space after 2 mith) density profile at first
emittance maximum, an@) beam phase-space profile at first emit-  The final emittance thermalization feature we need to un-

tance maximum. derstand is the long-term stability of the equilibrium. From

mm is shown in Fig. &), and is 19 micro-radians, in good
agreement with Eq(21). In Fig. 4b), we see the density
profile at the first emittance maximum, and the profile is g
essentially uniform. Thus, all the excess potential energy hase
contributed to the emittance growth. In Figch we see the
beam’s radial phase space at the first emittance maximumg 2°° ‘ Ao
Its shape is similar to that in Fig.(@, as assumed in the
kinematic model.

In Fig. 5 we show the emittance evolution for a 2-MeV,
4-kA beam. The maximum and equilibrium emittance are
about 35% greater than for the 4-MeV, 4-kA beérig. 1),
demonstrating the energy scaling shown in E@E) and
(45). FIG. 6. 4-MeV, 2-kA case, emittance versus axial distance.
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FIG. 7. (a) Emittance versus axial position for density nonuni-
formity of 30% and(b) initial density profile for density nonunifor-
mity of 30%.

B: diazz E jrr’ézkdr sin(kz+ ¢y). (50)
. =1\ Jo %

Using | sz{)rﬁzykdr, we rewrite the axial work as

e B ) 1
U,= [TMEK: klksm(kz+¢>k)+r—2§k: [

_y_m

x cogkz+ ¢k)2k Kl sin(kz+ ¢y) {dz. (51)

Note that eactk term eventually averages to zero, including
the constantK=0) term. Thus, any long-term average ex-
change of energy between the axial to the transverse direc-
tions depends on correlations with the radial motion, which
are small. This results in the long-term stability of the equi-
librium emittance, as seen in Fig(d).
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APPENDIX: THERMALIZATION FROM WAVE

conservation of energy considerations, any change in the BREAKING IN PHASE SPACE
equilibrium emittance must occur from a transfer of energy (EMITTANCE-DOMINATED REGIME )

between the radial and axial directions. In our problem, the The purpose of this appendix is not to provide a compre-
external magnetic field is purely axial, and any transfer ofygngjve analysis of the transition between the space-charge

energy must be due to the diamagnetic magnetic field.
The time integrated axial work on a given particle is

Uzzef B, (r)vy(r)dz, (46)

where we user=r(z) over the particle’s orbit. The azi-
muthal velocity is given by Busch’s theorem,

e

14
o ymr

f;[BexKr)+Bz,dia(r)]rdr. (47)

and emittance-dominated regimes. That is a complex issue
and beyond the scope of this paper. Rather, it is to provide
insight into understanding over what range of initial mis-
matches these emittance oscillations will occur for a beam
with zero initial thermal emittance.

An important thermalization mechanism preventing emit-
tance oscillations for many types of beams is wave breaking
in phase spacgl6,17. Wave breaking occurs when phase
space becomes double valued, and the beam loses laminarity
as kinetic energy is converted to potential energy. In that
case, the radial correlations become mixed up and the emit-
tance quits oscillating, leading to a thermalization effect. Be-

We write the diamagnetic axial field in terms of a Fourier cause this wave breaking occurs during the first half of an

decomposition

Bz,dia=2k B, cogkz+ &), (48)

and the azimuthal velocity is

r2 r_
?BEXPLEK cogkz+ ¢Z)j0 B, rdr .

(49

e

o
" ymr

emittance oscillation period, the characteristic time for ther-
malization is a quarter plasma period.

For the beams considered in this paper, this wave-
breaking mechanism is negligible, but it does dominate for
many cases, which have been studied in detail using the non-
linear free-energy approadh,14,15. In order to complete
our understanding of the thermalization process for high-
brightness induction linac electron beams, we need to under-
stand the conditions where wave breaking leads to thermali-
zation. First, we will consider the case where the initial
emittance is zero, but the initial beam-current density is non-

Maxwell's equation for the divergence of the magnetic fielduniform. We will see that wave breaking only occurs at the

gives us

radial edges of the distribution. Next, we will consider the
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case where the initial density distribution is uniform, buttance; for simplicity, we will assume the beam is an ellipse
there is some initial emittance leading to a curvature in phasi phase space, where the beam divergence obeys

space. From this approach, we will find the characteristic 2 2

Tl emi - : 2, 8%(2By)

initial emittance that leads to wave breaking. For this case, r'2=(r2—r?)—g—. (A3)
wave breaking occurs when the initial phase-space curvature r
is large enough to overcome the space-charge repulsivs
force. In all cases, we will assume that the initial thermal

e

sing the assumed form for the radial equation of motion,
Eqg. (A2), we find that wave breaking for this case occurs if

emittance of the beam is zero. dridv=0
o . . x=0, or
Initial zero emittance casé-or this case, we assume that

the initial density distribution is nonuniform, but that the le

initial emittance is zerdthe beam’s distribution in phase X= s 2112 (A4)

space is a straight lineThe approximate condition for wave [ + ﬁsin( kpz))

breaking for a particle initially at a radiusis given by[17] Byrekp
. Note that wave breaking will always occur for any nonzero

f vp(v)dv>r2p(r), (A1) em!ttance, but only righ'g at.the edge of the beam for small

0 emittances. For thermalization of the bulk of the beam, the

wave breaking needs to occur in the middle of the beam, or

where v is a dummy variable of integration. Thus, wave the emittance must exceed the characteristic value of
breaking is present when the charge density drops to less

than 3 that of the average density out to that point. This ew-b=4reN(/14)/yB. (AS5)
condition is easy to derive, assuming that every particle has

radial equation of motion of the form EOI‘ the case studied in this paper, this characteristic emit-

tance is about 0.02 m, which is nearly two orders of magni-

r"=a(x)cogky2), (A2) tude larger than the actual emittances induced by the density
nonuniformity. Thus, thermalization due to wave breaking is
wherey is an index to keep track of each particle. negligible in the case considered. Note that the parameters

For a mostly matched, nearly uniform density beam, thisscale the same as in Eq89) and (45), and that the emit-
condition does not occur, except in the radial tail of the distance from a density nonuniformity of the type studied in this
tribution. Thus wave breaking will occur in the tail of a paper will never exceed the wave-breaking characteristic
distribution heavily peaked on axis, but will not occur in the value.
main body of a hollow distribution, as we have seen in the For comparison, we calculate the wave-breaking charac-
previous numerical simulations. teristic emittance for a hydrogen-ion beam, witk 2. For a

Uniform initial density caseFor the second case, we as- beam current of 100 mA and a beam radius of 1 mm, the
sume that the density is uniform, but that there is an initialcharacteristic wave breaking emittance is less than 0.2
beam emittance. There are an infinite number of possiblenm mrad. Thus, thermalization due to wave breaking is a
initial configurations in radial phase space with a given emit-much more common phenomena for beams in that regime.
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